Discrimination learning and attentional set formation in a mouse model of Fragile X.

نویسندگان

  • Kimberly S Casten
  • Annette C Gray
  • Rebecca D Burwell
چکیده

Fragile X Syndrome is the most prevalent genetic cause of mental retardation. Selective deficits in executive function, including inhibitory control and attention, are core features of the disorder. In humans, Fragile X results from a trinucleotide repeat in the Fmr1 gene that renders it functionally silent and has been modeled in mice by targeted deletion of the Fmr1 gene. Fmr1 knockout (KO) mice recapitulate many features of Fragile X syndrome, but evidence for deficits in executive function is inconsistent. To address this issue, we trained wild-type and Fmr1 KO mice on an experimental paradigm that assesses attentional set-shifting. Mice learned to discriminate between stimuli differing in two of three perceptual dimensions. Successful discrimination required attending only to the relevant dimension, while ignoring irrelevant dimensions. Mice were trained on three discriminations in the same perceptual dimension, each followed by a reversal. This procedure normally results in the formation of an attentional set to the relevant dimension. Mice were then required to shift attention and discriminate based on a previously irrelevant perceptual dimension. Wild-type mice exhibited the increase in trials to criterion expected when shifting attention from one perceptual dimension to another. In contrast, the Fmr1 KO group failed to show the expected increase, suggesting impairment in forming an attentional set. Fmr1 KO mice also exhibited a general impairment in learning discriminations and reversals. This is the first demonstration that Fmr1 KO mice show a deficit in attentional set formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attentional set-shifting in fragile X syndrome.

The ability to flexibly adapt to the changing demands of the environment is often reported as a core deficit in fragile X syndrome (FXS). However, the cognitive processes that determine this attentional set-shifting deficit remain elusive. The present study investigated attentional set-shifting ability in fragile X syndrome males with the well-validated intra/extra dimensional set-shifting para...

متن کامل

Effects of Citalopram on Learning and Memory in the Mouse and Rat

Data on the effects of serotonin reuptake inhibitors on learning and memory processes are not consistent. In the present study, the effects of citalopram, a very potent and completely selective inhibitor of the serotonin reuptake on spatial discrimination in the T-maze and Morris water maze, were assessed in mice and/or rats. Animals received different doses of citalopram (1, 2, 4, 8 or 16 mg/k...

متن کامل

Hyperactivity, perseveration and increased responding during attentional rule acquisition in the Fragile X mouse model

Attentional deficits and executive function impairments are common to many neurodevelopmental disorders of intellectual disability and autism, including Fragile X syndrome (FXS). In the knockout mouse model for FXS, significant changes in synaptic plasticity and connectivity are found in the prefrontal cortex (PFC)-a prominent region for attentional processing and executive control. Given these...

متن کامل

Early discrimination reversal learning impairment and preserved spatial learning in a longitudinal study of Tg2576 APPsw mice.

To understand the relationship between amyloid-beta and cognitive decline in Alzheimer's disease, we evaluated cortical and hippocampal function in a transgenic mouse model of amyloid over-expression in Alzheimer's disease, the Tg2576 mouse. Tg2576 mice and their non-transgenic littermates were assessed at both 6 and 14 months of age in a battery of cognitive tests: attentional set-shifting, wa...

متن کامل

A mouse model of fragile X syndrome exhibits heightened arousal and/or emotion following errors or reversal of contingencies.

This study was designed to further assess cognitive and affective functioning in a mouse model of Fragile X syndrome (FXS), the Fmr1(tm1Cgr) or Fmr1 "knockout" (KO) mouse. Male KO mice and wild-type littermate controls were tested on learning set and reversal learning tasks. The KO mice were not impaired in associative learning, transfer of learning, or reversal learning, based on measures of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Behavioral neuroscience

دوره 125 3  شماره 

صفحات  -

تاریخ انتشار 2011